#### Aug 8, 2017

## Presentation of clinical epidemiology study result



Hirohide Yokokawa, M.D., Ph.D.
Department of General Medicine,
Juntendo University School of Medicine

#### Contents

- Steps of data analysis.
- > Presentation of analyzed data.
- >Implications of results.

#### Steps of clinical epidemiology

#### Descriptive study

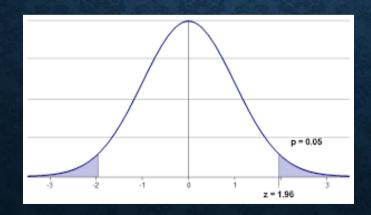
(To know distribution and characteristics)

Analytic study

(To know associations)

Intervention study

(To know effectiveness)


#### Descriptive study

- Checking distribution and characteristics of the participants:
   To know the distribution and characteristics may lead adequate advanced analysis.
- Checking errors: Data errors may be corrected before main analysis.

#### Analytic study

- Estimating associations: To know associations between outcome and factors.
- Exploring associated factors: To explore factors associated with outcome.

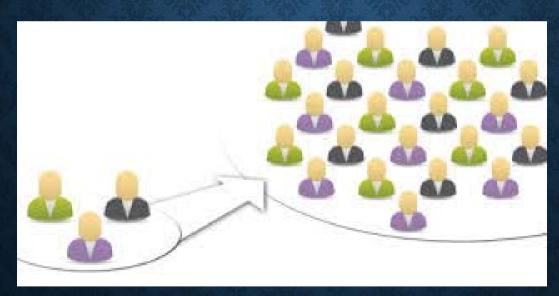
# Important reminder to interpret the statistical significance.



### Systolic BP (mmHg) in A and B group

| No |   | SBP |   | SBP |
|----|---|-----|---|-----|
| 1  | Α | 108 | В | 112 |
| 2  | Α | 119 | В | 141 |
| 3  | Α | 116 | В | 105 |
| 4  | Α | 103 | В | 125 |
| 5  | Α | 132 | В | 101 |
| 6  | Α | 97  | В | 126 |
| 7  | Α | 111 | В | 130 |
| 8  | Α | 114 | В | 143 |
| 9  | Α | 124 | В | 115 |
| 10 | Α | 124 | В | 94  |
| 11 | Α | 114 | В | 93  |
| 12 | Α | 118 | В | 117 |
| 13 | Α | 127 | В | 99  |
| 14 | Α | 125 | В | 108 |
| 15 | Α | 136 | В | 135 |
| 16 | Α | 120 | В | 108 |
| 17 | Α | 94  | В | 119 |
| 18 | Α | 105 | В | 135 |
| 19 | Α | 108 | В | 119 |
| 20 | Α | 115 | В | 135 |
| 21 | Α | 135 | В | 131 |
| 22 | Α | 114 | В | 128 |
| 23 | Α | 130 | В | 95  |
| 24 | Α | 134 | В | 152 |
| 25 | Α | 121 | В | 120 |
| 26 | А | 97  | В | 114 |
| 27 | А | 129 | В | 136 |
| 28 | А | 135 | В | 162 |
| 29 | А | 124 | В | 140 |
| 30 | Α | 136 | В | 121 |

| Group                  | N  | Mean SBP | SD      |  |  |  |  |
|------------------------|----|----------|---------|--|--|--|--|
| Α                      | 30 | 118.833  | 12.228  |  |  |  |  |
| В                      | 30 | 121.967  | 17.4207 |  |  |  |  |
| P value= <b>0.4233</b> |    |          |         |  |  |  |  |


No statistical significance is observed, if we analyze 30 subjects in each group.

Sample size is increased from 30 to 510 by 17 times

| Group                  | N   | Mean SBP | SD      |  |  |  |  |
|------------------------|-----|----------|---------|--|--|--|--|
| Α                      | 510 | 118.833  | 12.0342 |  |  |  |  |
| В                      | 510 | 121.967  | 17.1447 |  |  |  |  |
| P value= <b>0.0008</b> |     |          |         |  |  |  |  |

Statistical significance is observed, although mean SBP are not changed..

It is possible to observe statistical significance with a large sample size while no statistical significance is observed with a smaller sample size.



Explorable.com

Which do you think is true?

Which do you think is true: statistical significance with a large sample size or no statistical significance with a small sample size?





A statistical significance may be observed with a large sample size although there is less clinical significance.

A statistical significance may not be observed with a small sample size although there is actual clinical significance.

Be careful when you interpret your results!

#### An example of research question

Your BMI is over than 30.
You have to reduce
your body weight!

My body style Is very thin!







No need Intervention.

What has happened? The patient has diabetes which is treated based on HbA1c.

What is "BMI"?

#### Diabetes Control among Vietnamese Patients in Ho Chi Minh City: An Observational Cross-Sectional Study

Hirohide Yokokawa, MD, PhD¹; Nguyen Thy Khue, MD, PhD²; Aya Goto, MD, MPH, PhD³; Tran Quang Nam, MD, MSc⁴; Tran The Trung, MD, MSc⁵; Vo Tuan Khoa, MD, MSc⁶; Nguyen Thi Boi Ngoc, MD³; Pham Nghiem Minh, MD³; Nguyen Quang Vinh, MD, MSc⁰; Akira Okayama, MD, PhD¹⁰; Seiji Yasumura, MD, PhD¹¹

Author 1,3,11 are affiliated with the Department of Public Health, Fukushima Medical University School of Medicine, Author 2,4,5 are affiliated with the Department of Endocrinology, University of Medicine and Pharmacy, Ho Chi Minh City, Author 3 are affiliated with the Department of Endocrinology, People Hospital 115, Author 3 is affiliated with the Prenatal and Newborn Screening Laboratory, Tu Du Obstetrical and Gynecological Hospital, Author 3 is affiliated with the Hanh Phuc Women and Children Hospital Project, Author 10 is affiliated with The First Institute for Health Promotion and Health Care, Japan Anti-Tuberculosis Association. Contact author: Hirohide Yokokawa, Fukushima City, Fukushima 960-1295, Japan. Phone: 81-24-947-1178; Fax: 81-24-547-1183; Email: yokokawa@fmu.ac.jp.

Submitted May 8, 2009; Revised and Accepted January 12, 2010

#### Investigators of the study





University of Medicine and Pharmacy, Ho Chi Minh City



Fukushima Medical University
School of Medicine

Nguyen Thy Khue, MD,PhD Tran The Trung, MD, MSc Tram Quang Nam, MD, MSc <u>Hirohide Yokokawa,</u> MD, PhD <u>Aya Goto,</u> MD, MPH, PhD Seiji Yasumura, MD, PhD

#### People Hospital 115

**Medic Center** 

<u>Tram Quang Nam</u>, MD, MSdNguyen Thy Khue, MD, PhD <u>Vo Tuan Khoa, MD, MSc</u> <u>Tran Viet Thang, MD</u> <u>Nguyen Thi Boi Ngoc, MD</u> <u>Do Hoang Oanh</u>, MD



Akira Okayama, MD, PhD (Special adviser)

Nguyen Quang Vinh, MD, MSc (Special adviser)
Pham Nghiem Minh, MD (Data management)

This research was founded by Health Promotion Foundation



#### Evaluation of diabetic control

| Evaluation | Excellent | Good        | Fair        | poor  |
|------------|-----------|-------------|-------------|-------|
| HbA1c(%)   | 6.0       | 6.1<br>~6.9 | 7.0<br>~7.9 | 8.0 ~ |

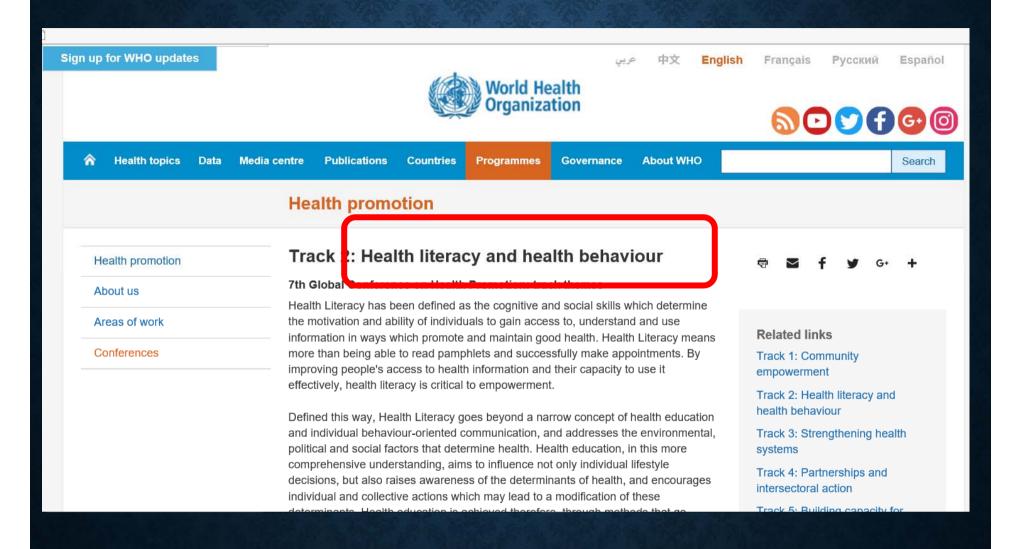
Table 2. Distribution of Hemoglobin A1c among Vietnamese Diabetic Patients

|                      | N (%)               |              |  |  |  |  |
|----------------------|---------------------|--------------|--|--|--|--|
| Ranges of            | People Hospital 115 | Medic Center |  |  |  |  |
| Hemoglobin A1c (%)a) | N=223               | N=383        |  |  |  |  |
| 5.7 or less          | 15 (6.7)            | 13 (3.3)     |  |  |  |  |
| 5.8-6.4              | 38 (17.0)           | 64 (16.7)    |  |  |  |  |
| 6.5-6.9              | 33 (14.8)           | 72 (18.8)    |  |  |  |  |
| 7.0-7.9              | 47 (21.1)           | 103 (26.9)   |  |  |  |  |
| 8.0 or over          | 90 (40.4)           | 131 (34.2)   |  |  |  |  |

a) Hemoglobin A1c was stratified according to the Diabetes Mellitus Treatment Guideline established by the Japan Diabetes Association.

### Table 3. Perception of Good Diabetic Control among Diabetic Patients

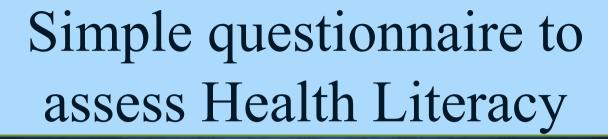
|                      | Perception of good diabetic control [N (%)]a) |               |  |  |  |  |  |
|----------------------|-----------------------------------------------|---------------|--|--|--|--|--|
| Ranges of Hemoglobin | People Hospital 115                           | Medic Center  |  |  |  |  |  |
| $A1c(\%)^{b)}$       | N=222                                         | N=384         |  |  |  |  |  |
| 5.7 or less          | 12/15 (80.0)                                  | 10/13 (76.9)  |  |  |  |  |  |
| 5.8-6.4              | 37/42 (88.1)                                  | 67/81 (82.7)  |  |  |  |  |  |
| 6.5-6.9              | 28/35 (80.0)                                  | 47/68 (69.1)  |  |  |  |  |  |
| 7.0-7.9              | 32/44 (72.7)                                  | 66/95 (69.5)  |  |  |  |  |  |
| 8.0 or over          | 47/86 (54.7)                                  | 57/127 (44.9) |  |  |  |  |  |


a) Perception of good diabetic control was estimated by 3 or 4 from 4 point scales (Not at all=1, to a great extent=4).

b) Hemoglobin A1c was stratified according to the Diabetes Mellitus Treatment Guideline established by the Japan Diabetes Association.

#### A research question

About half of the patients whose diabetic control was poor (HbA1c  $\geq 8.0$  %), had good diabetic control perception.


We have to consider "Patient's ability to promote their health".



http://www.who.int/healthpromotion/conferences/7gchp/track2/en/

#### Definition of Health Literacy

Health Literacy has been defined as the cognitive and social skills which determine the motivation and ability of individuals to gain access to, understand and use information in ways which promote and maintain good health.



| 1 | Seeking information from various                |
|---|-------------------------------------------------|
|   | sources                                         |
| 2 | Extracting relevant information                 |
| 3 | Understanding and communicating the information |
| 4 | Considering the credibility of the information  |
| 5 | Making decisions based on the information       |

Ishikawa H, Nomura K, Sato M, Yano E. Health Promot Int. 2008; 23: 269-274.

### How to present distribution and characteristics?

- The first Table (Table 1) usually shows distribution and characteristics.
- As representative values, mean (standard deviation) for parametric data, median (minimum, maximum) for non-parametric data, percentage for categorical data are usually used.

### Table 1. Health literacy specific characteristics among men (N=781)

|                                 | Low health | n literacy (≤13) | High healt | h literacy (≥14) | Pa) |
|---------------------------------|------------|------------------|------------|------------------|-----|
|                                 | (N=350)    |                  | (N=431)    |                  |     |
| Age (years)                     | 51.2       | (9.9)            | 51.0       | (9.9)            |     |
| Anthropometric measurements     |            |                  |            |                  |     |
| Height (cm)                     | 170.0      | (6.5)            | 170.2      | (6.4)            |     |
| Body weight (kg)                | 68.6       | (12.1)           | 68.8       | (11.1)           |     |
| Body mass index (BMI)           | 23.7       | (3.8)            | 23.7       | (3.4)            |     |
| Waist circumference (cm)        | 85.0       | (9.5)            | 84.6       | (8.8)            |     |
| Atherosclerotic complications   |            |                  |            |                  |     |
| Cardiovascular disease          | 13         | (3.7)            | 18         | (4.2)            |     |
| Cerebrovascular disease         | 3          | (0.9)            | 8          | (1.9)            |     |
| Hypertension-related factors    |            |                  |            |                  |     |
| Systolic blood pressure (pmHg)  | 133.5      | (19.4)           | 135.0      | (17.7)           |     |
| Diastolic blood pressure (mmHg) | 81.1       | (12.4)           | 81.7       | (12.1)           |     |
| Antihypertensive drug use (yes) | 72         | (20.6)           | 102        | (23.7)           |     |

Mean (standard deviation) is used for continuous variables

Number (percentage) is used for categorical variables

| Healthy lifestyle characteristics       |     |        |            |    |
|-----------------------------------------|-----|--------|------------|----|
| Alcohol consumption                     | 161 | (46.0) | 223 (51.7) |    |
| (non-everyday drinker)                  |     | ,      | ( )        |    |
| Smoking behavior                        | 174 | (49.7) | 262 (60.8) | ** |
| (non-current smoker)                    |     | ,      | ` '        |    |
| Exercise frequency                      | 48  | (13.7) | 96 (22.3)  | ** |
| (2 times or more per week)              |     | , ,    | ` '        |    |
| Body mass index (18.5-24.9)             | 216 | (61.7) | 293 (68.0) | *  |
| Sleep hours (6-9)                       | 220 | (62.9) | 290 (67.3) |    |
| Breakfast (every morning)               | 277 | (79.1) | 355 (82.4) |    |
| Snack between meals (no)                | 287 | (82.0) | 371 (86.1) |    |
| Total number of healthy lifestyle items | 4.0 | (1.2)  | 4.4 (1.2)  | ** |
| Proportion of participants with 6 or 7  | 34  | (9.7)  | 76 (17.6)  | ** |
| total number of healthy lifestyle       |     |        |            |    |
| items                                   |     |        |            |    |

As for presentation of "P value", asterisk mark is sometimes used (\*P<0.05, \*\*P<0.01). Direct input also may be applicable.

- 1. Check the distribution of age, body mass index, waist circumference. (Draw histograms)
- 2. Estimate representative value. (mean, standard deviation)
- 3. Estimate statistical difference of age, BMI and WC between low and high health literacy. (t-test or U-test)
- 4. Estimate statistical difference of cardiovascular and cerebrovascular disease. (Chi square test)

# How to present analytic study data?

# Which statistical methods do you use?

- Linear regression analysis
- Logistic regression analysis
- Correlation analysis

Table 2. Logistic regression analysis of health literacy for men with 6-7 healthy lifestyle characteristics (N=781)

|                                                        | Uni  | variate analy       |    | Multivariate analysis |                                |    |      |                                    |    |
|--------------------------------------------------------|------|---------------------|----|-----------------------|--------------------------------|----|------|------------------------------------|----|
| Health literacy                                        | ORa  | 95% CI <sup>b</sup> | Pe | ORa                   | Model 1<br>95% CI <sup>b</sup> | Pe | ORa  | <b>Model 2</b> 95% CI <sup>b</sup> | Pe |
| Seeking information from various                       | 1.26 | 0.78-2.02           |    | -                     | -                              |    | 1.44 | 0.89-2.34                          |    |
| sources (≥4 vs. <4)<br>Extracting relevant information | 1.31 | 0.85-2.01           |    | -                     | -                              |    | 1.50 | 0.97-2.32                          |    |
| (≥4 vs. <4)<br>Understanding and                       | 1.59 | 1.06-2.39           | ** | _                     | _                              |    | 1.63 | 1.08-2.47                          | *  |
| communicating the information                          | -107 | -100 -100           |    |                       |                                |    |      |                                    |    |
| (≥4 vs.  Considering the credibility of the            | 1.49 | 0.99-2.23           |    | -                     | -                              |    | 1.39 | 0.92-2.10                          |    |
| indormation (≥4 vs. <4)  Making decisions based on the | 2.16 | 1.42-3.27           | ** | _                     | -                              |    | 2.04 | 1.34-3.10                          | ** |
| information (≥4 vs. <4))                               | 1 00 | 1 20 2 06           | ** | 2.00                  | 1 22 2 22                      | ** |      |                                    |    |
| Total score (≥14 vs. <14)                              | 1.99 | 1.29-3.06           | ** | 2.08                  | 1.33-3.23                      | ** | -    | -                                  |    |

Order; Univariate analysis, Multivariate analysis Number (%), Odds ratio, 95% confidence interval, and P value Estimate the potential of high HL to promote a healthy lifestyle with 6-7 healthy characteristics or presence of metabolic syndrome. (Logistic regression analysis)

- 1. Univariate analysis
- 2. Multivariate analysis adjusting with age (years), and atherosclerotic complications (cardiovascular and cerebrovascular diseases)

### Implication of multivariate analysis (Example)

|                             |             | A STATE OF THE PARTY OF THE PAR |                      | 10000     |                  |                       |    | And the latest the same of the |                       |    |  |
|-----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------------|-----------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|--|
|                             |             | Univariate analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |           |                  | Model 1 <sup>c)</sup> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model 2 <sup>d)</sup> |    |  |
|                             | N (%)       | OR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% CI <sup>b)</sup> | P         | OR <sup>a)</sup> | 95% CI <sup>b)</sup>  | P  | OR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% CI <sup>b)</sup>  | P  |  |
| Age (years) <sup>e)</sup>   |             | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.71-2.04            | **        | 1.98             | 1.81-2.17             | ** | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.68-2.04             | ** |  |
| Anthropometric measurements |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                  |                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| Body mass index (BMI)       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                  |                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| C1 < 25.0                   | 3990 (72.2) | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Reference |                  | eference              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| $25.0 \le C2 < 27.5$        | 1040 (18.8) | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.71-2.60            | **        | 2.10             | 1.72-2.56             | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| $27.5 \le C3 < 30.0$        | 331 (6.0)   | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.63-3.10            | **        | 2.37             | 1.75-3.23             | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| $30.0 \le C4$               | 166 (3.0)   | 2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.76-4.06            | **        | 3.46             | 2.34-5.12             | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| Waist circumference (cm)    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |           |                  |                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |    |  |
| C1 < 85                     | 2614 (47.3) | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eference             |           |                  |                       |    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eference              |    |  |
| $85 \le C2 < 90$            | 1419 (25.7) | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20-1.90            | **        |                  |                       |    | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.10-1.78             | ** |  |
| $90 \le C3 < 95$            | 833 (15.1)  | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14-2.25            | **        |                  |                       |    | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17-2.03             | ** |  |
| 95 ≤ C4                     | 661 (12.0)  | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.06-3.41            | **        |                  |                       |    | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.92-3.30             | ** |  |

C4 was 3.46 times likely to have low % vital capacity (<80%) compared to reference (C1) after adjusting by cofounders.

Table 2. Logistic regression analysis of health literacy for men with 6-7 healthy lifestyle characteristics (N=781)

|                                    | Uni  | variate analy       | sis | Multivariate analysis |                                |    |          |                                       |    |
|------------------------------------|------|---------------------|-----|-----------------------|--------------------------------|----|----------|---------------------------------------|----|
|                                    | ORa  | 95% CI <sup>b</sup> | Pe  | ORa                   | Model 1<br>95% CI <sup>b</sup> | Pe | ORa      | <b>Model 2</b><br>95% CI <sup>b</sup> | Pe |
| Health literacy                    |      |                     |     |                       |                                |    |          |                                       |    |
| Seeking information from various   | 1.26 | 0.78-2.02           |     | -                     | -                              |    | 1.44     | 0.89-2.34                             |    |
| sources (≥4 vs. <4)                |      |                     |     |                       |                                |    |          |                                       |    |
| Extracting relevant information    | 1.31 | 0.85-2.01           |     | -                     | -                              |    | 1.50     | 0.97-2.32                             |    |
| (≥4 vs. <4)                        |      |                     |     |                       |                                |    |          |                                       |    |
| Understanding and                  | 1.59 | 1.06-2.39           | **  | -                     | -                              |    | 1.63     | 1.08-2.47                             | *  |
| communicating the information      |      |                     |     |                       |                                |    |          |                                       |    |
| (≥4 vs. <4)                        |      |                     |     |                       |                                |    |          |                                       |    |
| Considering the credibility of the | 1.49 | 0.99-2.23           |     | -                     | -                              |    | 1.39     | 0.92-2.10                             |    |
| information (≥4 vs. <4)            |      |                     |     |                       |                                |    |          |                                       |    |
| Making decisions based on the      | 2.16 | 1.42-3.27           | **  | -                     | -                              |    | 2.04     | 1.34-3.10                             | ** |
| information (≥4 vs. <4))           |      |                     |     |                       |                                |    | 1        |                                       |    |
| Total score (≥14 vs. <14)          | 1.99 | 1.29-3.06           | **  | 2.08                  | 1.33-3.23                      | ** | <u> </u> | -                                     |    |

#### Interpret the result of OR



https://kdhhealthcomm.wordpress.com/cat egory/health-literacy-3/

#### RESEARCH Open Access

Association between health literacy and metabolic syndrome or healthy lifestyle characteristics among community-dwelling Japanese people

Hirohide Yokokawa<sup>1\*</sup>, Hiroshi Fukuda<sup>1</sup>, Motoyuki Yuasa<sup>2</sup>, Hironobu Sanada<sup>3,4</sup>, Teruhiko Hisaoka<sup>1</sup> and Toshio Naito<sup>1</sup>

Diabetol Metab Syndr. 2016 Mar 24;8:30. doi: 10.1186/s13098-016-0142-8. eCollection 2016.

https://dmsjournal.biomedcentral.com/articles/10.1186/s13098-016-0142-8